Attacking Malware with Adversarial Machine Learning, w/ Edward Raff - #529

47:38
 
Share
 

Manage episode 305152674 series 2355587
By TWIML and Sam Charrington. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.

Today we’re joined by Edward Raff, chief scientist and head of the machine learning research group at Booz Allen Hamilton. Edward’s work sits at the intersection of machine learning and cybersecurity, with a particular interest in malware analysis and detection. In our conversation, we look at the evolution of adversarial ML over the last few years before digging into Edward’s recently released paper, Adversarial Transfer Attacks With Unknown Data and Class Overlap. In this paper, Edward and his team explore the use of adversarial transfer attacks and how they’re able to lower their success rate by simulating class disparity. Finally, we talk through quite a few future directions for adversarial attacks, including his interest in graph neural networks.

The complete show notes for this episode can be found at twimlai.com/go/529.

593 episodes