Applying the Causal Roadmap to Optimal Dynamic Treatment Rules with Lina Montoya - #506

54:20
 
Share
 

Manage episode 299000883 series 2355587
By TWIML and Sam Charrington. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.

Today we close out our 2021 ICML series joined by Lina Montoya, a postdoctoral researcher at UNC Chapel Hill.

In our conversation with Lina, who was an invited speaker at the Neglected Assumptions in Causal Inference Workshop, we explored her work applying Optimal Dynamic Treatment (ODT) to understand which kinds of individuals respond best to specific interventions in the US criminal justice system. We discuss the concept of neglected assumptions and how it connects to ODT rule estimation, as well as a breakdown of the causal roadmap, coined by researchers at UC Berkeley.

Finally, Lina talks us through the roadmap while applying the ODT rule problem, how she’s applied a “superlearner” algorithm to this problem, how it was trained, and what the future of this research looks like.

The complete show notes for this episode can be found at twimlai.com/go/506.

593 episodes